Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Developmental biology

Embryonic and fetal myogenic programs act through separate enhancers at the MLC1F/3F locus.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Developmental biology - 15 Jul 1997

Kelly RG, Zammit PS, Schneider A, Alonso S, Biben C, Buckingham ME

Link to Pubmed [PMID] – 9242416

Dev Biol 1997 Jul; 187(2): 183-99

Embryonic and fetal stages of skeletal muscle development are characterized by the differential expression of a number of muscle-specific genes. These include the products of independent promoters at the fast myosin light chain 1F/3F locus. In the mouse embryo MLC1F transcripts accumulate in embryonic skeletal muscle from E9, 4-5 days before high-level accumulation of MLC3F transcripts. A 3′ enhancer can activate MLC1F and MLC3F promoters in differentiated muscle cells in vitro and in transgenic mice; both promoters, however, are activated at the time of MLC1F transcript accumulation. We now demonstrate the presence of a second muscle-specific enhancer at this locus, located in the intron separating the MLC1F and MLC3F promoters. Transgenic mice containing the intronic, but lacking the 3′ enhancer, express high levels of an nlacZ reporter gene from the MLC3F promoter in adult fast skeletal muscle fibers. In contrast to the 3′ enhancer, the intronic element is inactive both in embryonic muscle cells in vivo and in embryonic myocyte cultures. The intronic enhancer is activated at the onset of fetal development in both primary and secondary muscle fibers, at the time of endogenous MLC3F transcript accumulation. Late-activated MLC3F transgenes thus provide a novel in toto marker of fetal myogenesis. These results suggest that temporal regulation of transcription at the MLC1F/3F locus is controlled by separate enhancers which are differentially activated during embryonic and fetal development.