Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of the American Chemical Society

Membrane localization and flexibility of a lipidated ras peptide studied by molecular dynamics simulations

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of the American Chemical Society - 24 Nov 2004

Gorfe AA, Pellarin R, Caflisch A

Link to Pubmed [PMID] – 15548025

J. Am. Chem. Soc. 2004 Nov;126(46):15277-86

Lipid-modified membrane-binding proteins are essential in signal transduction events of the cell, a typical example being the GTPase ras. Recently, membrane binding of a doubly lipid-modified heptapeptide from the C-terminus of the human N-ras protein was studied by spectroscopic techniques. It was found that membrane binding is mainly due to lipid chain insertion, but it is also favored by interactions between apolar side chains and the hydrophobic region of the membrane. Here, 10 explicit solvent molecular dynamics simulations for a total time of about 150 ns are used to investigate the atomic details of the peptide-membrane association. The 16:0 peptide lipid chains are more mobile than the 14:0 phospholipid chains, which is in agreement with (2)H NMR experiments. Peptide-lipid and peptide-solvent interactions, backbone and side-chain distributions, as well as the effects of lipidated peptide insertion onto the structure, and dynamics of a 1,2-dimyristoylglycero-3-phosphocholine bilayer are described. The simulation results validate the structural model proposed by the analysis of spectroscopic data and highlight the main aspects of the insertion mechanism. The peptide in the membrane is rather rigid over the simulation time scale of about 10 ns, but different partially extended conformations devoid of backbone hydrogen bonds are observed in different trajectories.

http://www.ncbi.nlm.nih.gov/pubmed/15548025