Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Xavier Montagutelli, Institut Pasteur
Publication : Journal of the American Society of Nephrology : JASN

Maternal environment interacts with modifier genes to influence progression of nephrotic syndrome.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of the American Society of Nephrology : JASN - 01 Aug 2008

Ratelade J, Lavin TA, Muda AO, Morisset L, Mollet G, Boyer O, Chen DS, Henger A, Kretzler M, Hubner N, Théry C, Gubler MC, Montagutelli X, Antignac C, Esquivel EL,

Link to Pubmed [PMID] – 18385421

Link to DOI – 10.1681/ASN.2007111268

J. Am. Soc. Nephrol. 2008 Aug; 19(8): 1491-9

Mutations in the NPHS2 gene, which encodes podocin, are responsible for some cases of sporadic and familial autosomal recessive steroid-resistant nephrotic syndrome. Inter- and intrafamilial variability in the progression of renal disease among patients bearing NPHS2 mutations suggests a potential role for modifier genes. Using a mouse model in which the podocin gene is constitutively inactivated, we sought to identify genetic determinants of the development and progression of renal disease as a result of the nephrotic syndrome. We report that the evolution of renal disease as a result of nephrotic syndrome in Nphs2-null mice depends on genetic background. Furthermore, the maternal environment significantly interacts with genetic determinants to modify survival and progression of renal disease. Quantitative trait locus mapping suggested that these genetic determinants may be encoded for by genes on the distal end of chromosome 3, which are linked to proteinuria, and on the distal end of chromosome 7, which are linked to a composite trait of urea, creatinine, and potassium. These loci demonstrate epistatic interactions with other chromosomal regions, highlighting the complex genetics of renal disease progression. In summary, constitutive inactivation of podocin models the complex interactions between maternal and genetically determined factors on the progression of renal disease as a result of nephrotic syndrome in mice.