Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Uwe Maskos
Tranche d'hippocampe de souris colorée avec deux toxines spécifiques de sous-types de récepteur nicotinique, en rouge (grains), et en vert (corps cellulaires). L'hippocampe est la zone du cerveau qui gère la mémoire spatiale.
Publication : FASEB journal : official publication of the Federation of American Societies for Experimental Biology

Loss of high-affinity nicotinic receptors increases the vulnerability to excitotoxic lesion and decreases the positive effects of an enriched environment.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in FASEB journal : official publication of the Federation of American Societies for Experimental Biology - 01 Dec 2007

Zanardi A, Ferrari R, Leo G, Maskos U, Changeux JP, Zoli M,

Link to Pubmed [PMID] – 17622669

FASEB J 2007 Dec; 21(14): 4028-37

Pharmacological activation of nicotinic acetylcholine receptors (nAChRs) exerts neuroprotective effects in cultured neurons and the intact animal. Much less is known about a physiological protective role of nAChRs. To understand whether endogenous activation of beta2* nAChRs contributes to the maintenance of the functional and morphological integrity of neural tissue, adult beta2-/- mice were subjected to in vivo challenges that cause neurodegeneration and cognitive impairment (intrahippocampal injection of the excitotoxin quinolinic acid), or neuroprotection and cognitive potentiation (2-month exposure to an enriched environment). The excitotoxic insult caused an increased deficit in the Morris water maze learning curve and increased loss of hippocampal pyramidal cells in beta2-/- mice. Exposure to an enriched environment improved performance in contextual and cued fear conditioning and object recognition tests in beta2+/+, whereas the improvement was absent in beta2-/- mice. In addition, beta2+/+, but not beta2-/-, mice exposed to an enriched environment showed a significant hypertrophy of the CA1/3 regions. Thus, lack of beta2* nAChRs increased susceptibility to an excitotoxic insult and diminished the positive effects of an enriched environment. These results may be relevant to understanding the pathophysiological consequences of the marked decrease in nAChRs that occurs in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.