Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Stem cells (Dayton, Ohio)

Isolation of a highly myogenic CD34-negative subset of human skeletal muscle cells free of adipogenic potential

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Stem cells (Dayton, Ohio) - 01 Apr 2010

Pisani DF, Dechesne CA, Sacconi S, Delplace S, Belmonte N, Cochet O, Clement N, Wdziekonski B, Villageois AP, Butori C, Bagnis C, Di Santo JP, Kurzenne JY, Desnuelle C, Dani C

Link to Pubmed [PMID] – 20135684

Stem Cells 2010 Apr;28(4):753-64

The differentiation of multipotent cells into undesirable lineages is a significant risk factor when performing cell therapy. In muscular diseases, myofiber loss can be associated with progressive fat accumulation that is one of the primary factors leading to decline of muscular strength. Therefore, to avoid any contribution of injected multipotent cells to fat deposition, we have searched for a highly myogenic but nonadipogenic muscle-derived cell population. We show that the myogenic marker CD56, which is the gold standard for myoblast-based therapy, was unable to separate muscle cells into myogenic and adipogenic fractions. Conversely, using the stem cell marker CD34, we were able to sort two distinct populations, CD34(+) and CD34(-), which have been thoroughly characterized in vitro and in vivo using an immunodeficient Rag2(-/-)gamma(c) (-/-) mouse model of muscle regeneration with or without adipose deposition. Our results demonstrate that both populations have equivalent capacities for in vitro amplification. The CD34(+) cells and CD34(-) cells exhibit equivalent myogenic potential, but only the CD34(-) population fails to differentiate into adipocytes in vitro and in vivo after transplantation into regenerative fat muscle. These data indicate that the muscle-derived cells constitute a heterogeneous population of cells with various differentiation potentials. The simple CD34 sorting allows isolation of myogenic cells with no adipogenic potential and therefore could be of high interest for cell therapy when fat is accumulated in diseased muscle.