Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Antimicrobial agents and chemotherapy

Intrinsic epidemicity of Streptococcus pneumoniae depends on strain serotype and antibiotic susceptibility pattern

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Antimicrobial agents and chemotherapy - 25 Jul 2011

Domenech de Cellès M, Opatowski L, Salomon J, Varon E, Carbon C, Boëlle PY, Guillemot D

Link to Pubmed [PMID] – 21788454

Antimicrob. Agents Chemother. 2011 Nov;55(11):5255-61

Streptococcus pneumoniae is a major cause of invasive diseases worldwide. It spreads through an interindividual transmission, followed by usually harmless colonization of the host. Possible transmission differences reflecting intrinsic strain features (e.g., serotype and antibiotic susceptibility) have been little studied so far. In this study, we used epidemiological data from an interventional trial of S. pneumoniae carriage among kindergartners and developed a mathematical model to estimate the transmission parameters of the different strains isolated during that study. We found small but significant transmissibility differences between the observed serotypes: serotypes 3, 6A, and 19A were found to be the most epidemic, while serotypes 23F, 9V, and 14 were the least epidemic. Further analysis indicated that, within a serotype, susceptible and resistant strains had different abilities to be transmitted. Susceptible-to-resistant transmission rate ratios were computed for five serotypes; susceptible strains were significantly more epidemic than resistant strains for serotypes 6A (mean, 1.02) and 19F (1.05). Serotype 19A resistant strains were not outcompeted by susceptible strains (0.97). Nonsignificant trends were observed for serotypes 6B (1.01) and 15A (0.98). Our results support the existence of heterogeneous abilities of the different serotypes for host-to-host transmission. They also suggest that antibiotic susceptibility within a serotype affects this transmissibility. We conclude that pneumococcal strains should not be considered equally at-risk in terms of transmission. Further quantification of strain-specific epidemic potential is needed, especially in a context of extensive use of conjugate vaccines with the aim of preventing pneumococcal infections.