Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Matteo Bonazzi, Edith Gouin
Observation en immunofluorescence d'une cellule infectée par Listeria monocytogenes. En bleu: marquage des protéines de surface de Listeria qui permet de visualiser les bactéries. En rouge et vert: marquage de l'actine, une protéine qui forme le cytosquelette des cellules. Les Listeria utilisent l'actine cellulaire pour former des "comêtes" et se déplacer à l'intérieur des cellules qu'elles infectent. Cell infected by Listeria monocytogenes. The surface proteins (in blue) of Listeria enable us to view the bacteria. Actin, a constituent protein of cells, is shown in red and green.
Publication : Blood

Intravenous immune globulin prevents venular vaso-occlusion in sickle cell mice by inhibiting leukocyte adhesion and the interactions between sickle erythrocytes and adherent leukocytes

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Blood - 20 Nov 2003

Turhan A, Jenab P, Bruhns P, Ravetch JV, Coller BS, Frenette PS

Link to Pubmed [PMID] – 14630831

Blood 2004 Mar;103(6):2397-400

Sickle cell vaso-occlusion is a complex multistep process likely involving heterotypic interactions among sickle erythrocytes (red blood cells [RBCs]), leukocytes (white blood cells [WBCs]), and endothelial cells. Recent data using intravital microscopy in a sickle cell mouse model suggest that adherent leukocytes in postcapillary venules play a critical role in vaso-occlusion by capturing circulating sickle RBCs. In the course of studies to investigate the adhesion receptors mediating sickle RBC-WBC interactions, we found that control nonspecific immunoglobulin G (IgG) preparations displayed significant inhibitory activity. As a result, we studied the effects of commercial intravenous human immune globulin (i.v.IG) preparations and found that i.v.IG inhibits RBC-WBC interactions in cremasteric venules in a dose-dependent manner. i.v.IG of at least 200 mg/kg dramatically reduced these interactions, even after tumor necrosis factor-alpha (TNF-alpha) stimulation, and not only increased microcirculatory blood flow but also improved survival of sickle cell mice. These data raise the possibility that i.v.IG may have a beneficial effect on sickle cell-associated vaso-occlusion.