Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : The Journal of neuroscience : the official journal of the Society for Neuroscience

Primordial hematopoietic stem cells generate microglia but not myelin-forming cells in a neural environment

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of neuroscience : the official journal of the Society for Neuroscience - 19 Nov 2003

Vitry S, Bertrand JY, Cumano A, Dubois-Dalcq M

Link to Pubmed [PMID] – 14627658

J. Neurosci. 2003 Nov;23(33):10724-31

Finding ways to enhance remyelination is a major challenge in treating demyelinating diseases. Recent studies have suggested that circulating bone marrow cells can home in brain and transdifferentiate into neural cells. To ask whether hematopoietic precursors can form myelinating cells, we investigated the neuropoietic potential of embryonic precursors sorted from the mouse aorta-gonads-mesonephros (AGM) region. This cell fraction is capable of long-term hematopoietic reconstitution and generates colonies containing multipotential precursors and lymphoid or erythro-myeloid progenies. When cultured in hematopoietic growth conditions, a fraction of CD45-positive AGM cells coexpress neural markers such as nestin, the polysialylated form of neural cell adhesion molecule, the betaIII tubulin isoform, and glial fibrillary acidic protein. However, when hematopoietic precursors containing green fluorescent protein were cocultured with embryonic striatal precursors into neurospheres, they maintained their hematopoietic phenotype without undergoing differentiation into neurons, astrocytes, or oligodendrocytes. After intraventricular grafting, hematopoietic precursors integrated into the brain of wild-type or hypomyelinated newborn shiverer mice and gave rise to microglia but not neurons or glia. In contrast, when wild-type embryonic striatal neurospheres were grafted in shiverer, they formed numerous myelin internode patches. Even when neural and hematopoietic precursors were grafted together into shiverer mice, only neural precursors generated myelin-forming cells and synthesized myelin. Thus, embryonic neurospheres have myelin repair properties not shown by embryonic hematopoietic precursors. This suggests that the use of multipotential neural precursors to generate myelin-forming cells remains one of the most promising avenues toward remyelination therapies.