Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Therese Couderc, Marc Lecuit
Publication : Methods in molecular biology (Clifton, N.J.)

Intestinal Organoids as a Novel Tool to Study Microbes-Epithelium Interactions.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Methods in molecular biology (Clifton, N.J.) - 01 Jan 2019

Nigro G, Hanson M, Fevre C, Lecuit M, Sansonetti PJ,

Link to Pubmed [PMID] – 27628134

Link to DOI – 10.1007/7651_2016_12

Methods Mol Biol 2019 ; 1576(): 183-194

The gut, particularly the colon, is the host of approximately 1000 bacterial species, the so-called gut microbiota. The relationship between the gut microbiota and the host is symbiotic and mutualistic, influencing many aspects of the biology of the host. This homeostatic balance can be disrupted by enteric pathogens, such as Shigella flexneri or Listeria monocytogenes, which are able to invade the epithelial layer and consequently subvert physiological functions. To study the host-microbe interactions in vitro, the crypt culture model, known as intestinal organoids, is a powerful tool. Intestinal organoids provide a model in which to examine the response of the epithelium, particularly the response of intestinal stem cells, to the presence of bacteria. Furthermore, the organoid model enables the study of pathogens during the early steps of enteric pathogen invasion.Here, we describe methods that we have established to study the cellular microbiology of symbiosis between the gut microbiota and host intestinal surface and secondly the disruption of host homeostasis due to an enteric pathogen.