Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Xavier Montagutelli, Institut Pasteur
Publication : Experimental dermatology

Increased mitochondrial respiratory chain enzyme activities correlate with minor extent of liver damage in mice suffering from erythropoietic protoporphyria.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Experimental dermatology - 01 Jan 2005

Navarro S, Del Hoyo P, Campos Y, Abitbol M, Morán-Jiménez MJ, García-Bravo M, Ochoa P, Grau M, Montagutelli X, Frank J, Garesse R, Arenas J, de Salamanca RE, Fontanellas A,

Link to Pubmed [PMID] – 15660916

Exp. Dermatol. 2005 Jan; 14(1): 26-33

Mitochondrial dysfunction might play a role in the pathogenesis of liver damage in erythropoietic protoporphyria (EPP). Changes in mitochondrial respiratory chain activities were evaluated in the Fech(m1pas)/Fech(m1pas) mouse model for EPP. Mice from different strains congenic for the same ferrochelatase germline mutation manifest variable degrees of hepatobiliary injury. Protoporphyric animals bred into the C57BL/6J background showed a higher degree of hepatomegaly and liver damage as well as higher protoporphyrin (PP) accumulation than those bred into the SJL/J and BALB/cJ backgrounds. Whereas mitochondrial respiratory chain activities remained unchanged in the liver of protoporphyric mice C57BL/6J, they were increased in protoporphyric mice from both SJL/J and BALB/cJ backgrounds, when compared to wild-type animals. Mitochondrial respiratory chain activities were increased in Hep G2 cell line after accumulation of PP following addition of aminolevulinic acid. As a direct effect of these elevated mitochondrial activities, in both hepatic cells from mutant mouse strains and Hep G2 cells, adenosine 5′-triphosphate (ATP) levels significantly increased as the intracellular PP concentration was reduced. These results indicate that PP modifies intracellular ATP requirements as well as hepatic mitochondrial respiratory chain enzymatic activities and further suggest that an increase of these activities may provide a certain degree of protection against liver damage in protoporphyric mice.

https://pubmed.ncbi.nlm.nih.gov/15660916