Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© J.M. Ghigo (Institut Pasteur) and Brigite Arbeille (LBC-ME. Faculté de Médecine de Tours)
Colorized scanning electron microscopy of an E. coli biofilm developing on a glass surface
Publication : Infection and Immunity

Identification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Infection and Immunity - 01 Nov 2001

Rossi MS, Fetherston JD, Létoffé S, Carniel E, Perry RD, Ghigo JM.

Link to Pubmed [PMID] – 11598042

Infect Immun. 2001 Nov;69(11):6707-17

Yersinia pestis possesses a heme-protein acquisition system (Hmu) that allows it to utilize heme and heme-protein complexes as the sole sources of iron. Analysis of the Y. pestis CO92 genomic sequence revealed a second heme-protein acquisition gene cluster that shares homology with the hemophore-dependent heme acquisition system (Has system) of Serratia marcescens. This locus consisted of the hasR(yp) receptor gene, the hasA(yp) hemophore gene, and genes encoding components of the HasA(yp) dedicated ABC transporter factor (hasDE(yp)), as well as a tonB homologue (hasB(yp)). By using a reconstituted secretion system in Escherichia coli, we showed that HasA(yp) is a secreted heme-binding protein and that expression of HasA(yp) is iron regulated in E. coli. The use of a transcriptional reporter fusion showed that the hasRADEB promoter is Fur regulated and has increased activity at 37 degrees C. Hemoglobin utilization via the Has(yp) system was studied with both E. coli and Y. pestis, for which has and has hmu mutant strains were used. No contribution of the Has system to heme utilization was observed in either E. coli or Y. pestis under the conditions we tested. Previously it was shown that a deletion of the Hmu system had no effect on the virulence of Y. pestis in a mouse model of bubonic plague. An Hmu(-) Has(-) double mutant also retained full virulence in this model of infection. This report constitutes the first attempt to investigate the contribution of the hemophore-dependent heme acquisition system in bacterial pathogenicity.

http://www.ncbi.nlm.nih.gov/pubmed/11598042