Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Uwe Maskos
Tranche d'hippocampe de souris colorée avec deux toxines spécifiques de sous-types de récepteur nicotinique, en rouge (grains), et en vert (corps cellulaires). L'hippocampe est la zone du cerveau qui gère la mémoire spatiale.
Publication : FASEB journal : official publication of the Federation of American Societies for Experimental Biology

Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in FASEB journal : official publication of the Federation of American Societies for Experimental Biology - 01 Feb 2017

Deflorio C, Blanchard S, Carisì MC, Bohl D, Maskos U,

Link to Pubmed [PMID] – 27856558

Link to DOI [DOI] – 10.1096/fj.201600932R

FASEB J. 2017 02; 31(2): 828-839

Tobacco smoking is a public health problem, with ∼5 million deaths per year, representing a heavy burden for many countries. No effective therapeutic strategies are currently available for nicotine addiction, and it is therefore crucial to understand the etiological and pathophysiological factors contributing to this addiction. The neuronal α5 nicotinic acetylcholine receptor (nAChR) subunit is critically involved in nicotine dependence. In particular, the human polymorphism α5D398N corresponds to the strongest correlation with nicotine dependence risk found to date in occidental populations, according to meta-analysis of genome-wide association studies. To understand the specific contribution of this subunit in the context of nicotine addiction, an efficient screening system for native human nAChRs is needed. We have differentiated human induced pluripotent stem (iPS) cells into midbrain dopaminergic (DA) neurons and obtained a comprehensive characterization of these neurons by quantitative RT-PCR. The functional properties of nAChRs expressed in these human DA neurons, with or without the polymorphism in the α5 subunit, were studied with the patch-clamp electrophysiological technique. Our results in human DA neurons carrying the polymorphism in the α5 subunit showed an increase in EC50, indicating that, in the presence of the polymorphism, more nicotine or acetylcholine chloride is necessary to obtain the same effect. This human cell culturing system can now be used in drug discovery approaches to screen for compounds that interact specifically with human native and polymorphic nAChRs.-Deflorio, C., Blanchard, S., Carisì, M. C., Bohl, D., Maskos, U. Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons.

https://pubmed.ncbi.nlm.nih.gov/27856558