Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Deriano Lab / Institut Pasteur
Chromosomes métaphasiques d’une cellule lymphoïde cancéreuse présentant une amplification des gènes Igh et c-myc
Publication : Blood

Human chronic lymphocytic leukemia B cells can escape DNA damage-induced apoptosis through the nonhomologous end-joining DNA repair pathway

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Blood - 17 Feb 2005

Deriano L, Guipaud O, Merle-Béral H, Binet JL, Ricoul M, Potocki-Veronese G, Favaudon V, Maciorowski Z, Muller C, Salles B, Sabatier L, Delic J

Link to Pubmed [PMID] – 15718417

Blood 2005 Jun;105(12):4776-83

Nonhomologous end-joining (NHEJ) DNA factors maintain genomic stability through their DNA double-strand break (DSB) repair and telomere-associated activities. Unrepaired or misrepaired DSBs can lead to apoptotic death or chromosomal damage. The B cells of some B-chronic lymphocytic leukemia (B-CLL) patients are resistant to radiation-induced apoptosis in vitro. We show here that the novel DNA-dependent protein kinase (DNA-PK) inhibitor, NU7026 (2-(morpholin-4-yl)-benzo[h]chomen-4-one), and the phosphatidylinositol 3 (PI-3) kinase inhibitor, wortmannin, restored sensitivity to DNA damage-induced apoptosis of otherwise resistant cells. These resistant malignant B cells also escaped DSB-induced apoptosis following exposure to etoposide or neocarzinostatin. We found that at 15 minutes after irradiation, the levels of NHEJ (as measured by an in vitro DSB end-ligation assay) and DNA-PK catalytic subunit (DNA-PKcs) activity were, respectively, 2-fold and 4-fold higher in radio-resistant than in radio-sensitive B-CLL cells or Epstein-Barr virus (EBV)-transformed B cells. Ku70/Ku80 heterodimer DNA end-binding activity was also 2- to 3-fold higher in the resistant B-CLL cell subset compared with the sensitive B-CLL cell subset. Our results provide the first evidence that overactivating the NHEJ DNA repair pathway impairs DNA damage-induced apoptosis in malignant B cells and that this may contribute to their resistance to current chemotherapy.

http://www.ncbi.nlm.nih.gov/pubmed/15718417