Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Mélanie Falord, Tarek Msadek, Jean-Marc Panaud
Staphylococcus aureus "golden staph" in scanning electron microscopy.
Publication : PloS one

Group B Streptococcus hijacks the host plasminogen system to promote brain endothelial cell invasion

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PloS one - 02 May 2013

Magalhães V, Andrade EB, Alves J, Ribeiro A, Kim KS, Lima M, Trieu-Cuot P, Ferreira P

Link to Pubmed [PMID] – 23658816

PLoS ONE 2013;8(5):e63244

Group B Streptococcus (GBS) is the leading cause of meningitis in neonates. We have previously shown that plasminogen, once recruited to the GBS cell surface and converted into plasmin by host-derived activators, leads to an enhancement of bacterial virulence. Here, we investigated whether plasmin(ogen) bound at the GBS surface contributes to blood-brain barrier penetration and invasion of the central nervous system. For that purpose, GBS strain NEM316 preincubated with or without plasminogen plus tissue type plasminogen activator was analyzed for the capacity to adhere to, invade and transmigrate the human brain microvascular endothelial cell (hBMEC) monolayer, and to penetrate the central nervous system using a neonatal mouse model. At earlier times of infection, plasmin(ogen)-treated GBS exhibited a significant increase in adherence to and invasion of hBMECs. Later, injury of hBMECs were observed with plasmin(ogen)-treated GBS that displayed a plasmin-like activity. The same results were obtained when hBMECs were incubated with whole human plasma and infected with untreated GBS. To confirm that the observed effects were due to the recruitment and activation of plasminogen on GBS surface, the bacteria were first incubated with epsilon-aminocaproic acid (εACA), an inhibitor of plasminogen binding, and thereafter with plasmin(ogen). A significant decrease in the hBMECs injury that was correlated with a decrease of the GBS surface proteolytic activity was observed. Furthermore, plasmin(ogen)-treated GBS infected more efficiently the brain of neonatal mice than the untreated bacteria, indicating that plasmin(ogen) bound to GBS surface may facilitate the traversal of the blood-brain barrier. A higher survival rate was observed in offspring born from εACA-treated mothers, compared to untreated mice, and no brain infection was detected in these neonates. Our findings suggest that capture of the host plasmin(ogen) by the GBS surface promotes the crossing of the blood-brain barrier and contributes to the establishment of meningitis.

http://www.ncbi.nlm.nih.gov/pubmed/23658816