Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of experimental zoology. Part B, Molecular and developmental evolution

Erosion of interaction networks in reduced and degraded genomes

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of experimental zoology. Part B, Molecular and developmental evolution - 15 Jan 2007

Ochman H, Liu R, Rocha EP

Link to Pubmed [PMID] – 17219366

J. Exp. Zool. B Mol. Dev. Evol. 2007 Jan;308(1):97-103

Unlike eukaryotes, which often recruit duplicated genes into existing protein-protein interaction (PPI) networks, the low levels of gene duplication coupled with the high probability of lateral transfer of novel genes alters the manner in which PPI networks can evolve in bacteria. By inferring the PPIs present in the ancestor to contemporary Gammaproteobacteria, we were able to trace the changes in gene repertoires, and their consequences on PPI network evolution, in several bacterial lineages that have independently undergone reductions in genome size and genome contents. As genomes degrade, virtually all multi-partner proteins have lost interactors; however, the overall average number of connections increases due to the preferential elimination of proteins that interact with only one other protein partner. We also studied the effect of lateral gene transfer on PPI network evolution by analyzing the connectivity of genes that have been gained along the Escherichia coli lineage, as well as those acquired genes subsequently silenced in Shigella flexneri, since diverging from the gammaproteobacterial ancestor. The situation in PPI networks, in which newly acquired genes preferentially attach to the hubs of the network, contrasts that observed in metabolic networks, which evolve by the peripheral gain and loss of genes, and in regulatory networks, in which high connectivity increases the propensity of loss.

http://www.ncbi.nlm.nih.gov/pubmed/17219366