Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Therese Couderc, Marc Lecuit
Publication : PLoS genetics

Epistatic control of intrinsic resistance by virulence genes in Listeria.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PLoS genetics - 01 Sep 2018

Scortti M, Han L, Alvarez S, Leclercq A, Moura A, Lecuit M, Vazquez-Boland J,

Link to Pubmed [PMID] – 30180166

Link to DOI – e100752510.1371/journal.pgen.1007525

PLoS Genet 2018 Sep; 14(9): e1007525

Elucidating the relationships between antimicrobial resistance and virulence is key to understanding the evolution and population dynamics of resistant pathogens. Here, we show that the susceptibility of the gram-positive bacterium Listeria monocytogenes to the antibiotic fosfomycin is a complex trait involving interactions between resistance and virulence genes and the environment. We found that a FosX enzyme encoded in the listerial core genome confers intrinsic fosfomycin resistance to both pathogenic and non-pathogenic Listeria spp. However, in the genomic context of the pathogenic L. monocytogenes, FosX-mediated resistance is epistatically suppressed by two members of the PrfA virulence regulon, hpt and prfA, which upon activation by host signals induce increased fosfomycin influx into the bacterial cell. Consequently, in infection conditions, most L. monocytogenes isolates become susceptible to fosfomycin despite possessing a gene that confers high-level resistance to the drug. Our study establishes the molecular basis of an epistatic interaction between virulence and resistance genes controlling bacterial susceptibility to an antibiotic. The reported findings provide the rationale for the introduction of fosfomycin in the treatment of Listeria infections even though these bacteria are intrinsically resistant to the antibiotic in vitro.