Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Laurent Debarbieux
Bactériophages sur la bactérie Escherichia coli 0104:H4 souche 55989.
Publication : Antimicrobial agents and chemotherapy

Design of a Broad-Range Bacteriophage Cocktail That Reduces Pseudomonas aeruginosa Biofilms and Treats Acute Infections in Two Animal Models

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Antimicrobial agents and chemotherapy - 25 May 2018

Forti F, Roach DR, Cafora M, Pasini ME, Horner DS, Fiscarelli EV, Rossitto M, Cariani L, Briani F, Debarbieux L, Ghisotti D

Link to Pubmed [PMID] – 29555626

Antimicrob. Agents Chemother. 2018 Jun;62(6)

The alarming diffusion of multidrug-resistant (MDR) bacterial strains requires investigations on nonantibiotic therapies. Among such therapies, the use of bacteriophages (phages) as antimicrobial agents, namely, phage therapy, is a promising treatment strategy supported by the findings of recent successful compassionate treatments in Europe and the United States. In this work, we combined host range and genomic information to design a 6-phage cocktail killing several clinical strains of , including those collected from Italian cystic fibrosis (CF) patients, and analyzed the cocktail performance. We demonstrated that the cocktail composed of four novel phages (PYO2, DEV, E215 and E217) and two previously characterized phages (PAK_P1 and PAK_P4) was able to lyse both in planktonic liquid cultures and in biofilms. In addition, we showed that the phage cocktail could cure acute respiratory infection in mice and treat bacteremia in wax moth () larvae. Furthermore, administration of the cocktail to larvae prior to bacterial infection provided prophylaxis. In this regard, the efficiency of the phage cocktail was found to be unaffected by the MDR or mucoid phenotype of the pseudomonal strain. The cocktail was found to be superior to the individual phages in destroying biofilms and providing a faster treatment in mice. We also found the larva model to be cost-effective for testing the susceptibility of clinical strains to phages, suggesting that it could be implemented in the frame of developing personalized phage therapies.

https://www.ncbi.nlm.nih.gov/pubmed/29555626