Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Structural Dynamics Of Macromolecules
The structure of a bacterial analog of the nicotinic receptor (one color per subunit) inserted into the cell membrane (grey and orange). A representation of the volume accessible to ions is shown in yellow.
Publication : Acta crystallographica. Section D, Biological crystallography

Cryophotolysis of caged compounds: a technique for trapping intermediate states in protein crystals

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Acta crystallographica. Section D, Biological crystallography - 22 Mar 2002

Ursby T, Weik M, Fioravanti E, Delarue M, Goeldner M, Bourgeois D

Link to Pubmed [PMID] – 11914484

Link to HAL – Click here

Link to DOI – 10.1107/s0907444902002135

Acta Crystallogr. D Biol. Crystallogr. 2002 Apr;58(Pt 4):607-14

Caged compounds in combination with protein crystallography represent a valuable tool in studies of enzyme reaction intermediates. To date, photochemical triggering of reactions has been performed close to room temperature. Synchronous reaction initiation has only been achieved with enzymes of relatively slow turnover (<0.1 s(-1)) and caged compounds of high quantum yield. Here X-ray crystallography and microspectrophotometry were used to provide evidence that (nitrophenyl)ethyl (NPE) ester bonds can be photolyzed by UV light at cryotemperatures. NPE-caged ATP in flash-cooled crystals of Mycobacterium tuberculosis thymidylate kinase was photolyzed successfully at 100-150 K as assessed by the structural observation of ATP-dependent enzymatic conversion of TMP to TDP after temporarily warming the crystals to room temperature. A new method is proposed in which cryo-photolysis combined with temperature-controlled protein crystallography can be used to trap reaction intermediates even in some of the fastest enzymes and/or when only compounds of low quantum yield are available. Raising the temperature after cryophotolysis may allow a transition barrier to be passed and an intermediate to accumulate in the crystal. A comparable method has only been used so far with proteins displaying endogenous photosensitivity. The approach described here opens the way to studying the reaction mechanisms of a much larger number of crystalline enzymes. Furthermore, it is shown that X-ray-induced radiolysis of caged compounds occurs if high-intensity synchrotron beamlines are used. This caveat should be taken into account when deriving data-collection protocols. It could also be used potentially as a way to trigger reactions.