Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Institut Pasteur
Structure de macromolécules : dimère d'aquométhémoglobine de cheval. Dérivé toxique oxydé de l'hémoglobine, représentant 1 à 2% du total.
Publication : The Biochemical journal

Concentrated solutions of salivary MUC5B mucin do not replicate the gel-forming properties of saliva.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Biochemical journal - 01 Mar 2002

Raynal BD, Hardingham TE, Thornton DJ, Sheehan JK,

Link to Pubmed [PMID] – 11853536

Biochem J 2002 Mar; 362(Pt 2): 289-96

We have developed a new approach to study the molecular organization of salivary mucus and salivary mucins using confocal fluorescence recovery after photobleaching (confocal-FRAP). MUC5B mucin, its reduced subunit and T-domains were prepared from saliva and fluorescently labelled. The translational self-diffusion coefficients were determined up to 3.6 mg/ml by confocal-FRAP. The results suggest that, in solutions of purified MUC5B mucin, at concentrations at which the hydrodynamic domains overlap, the intermolecular interactions are predominantly due to dynamic entanglements, and there was no evidence of specific self-association of MUC5B mucin, or of its subunits, or T-domains. The analysis of the salivary mucus gel also showed no specific interactions with the purified MUC5B components, but it was much less permeable than expected from its MUC5B content. The saliva was completely permeable to microspheres of 207 nm diameter, but showed size-dependent effects on the diffusion of larger microspheres (499 nm and 711 nm diameter). From these analyses the salivary mucus was shown to be both permeable and dynamic, and with the characteristics of a semi-dilute transient network at physiological concentration. Comparison of the results from saliva and purified MUC5B mucin solutions showed that the network properties of saliva were equivalent to a solution of purified MUC5B mucin of 10-20 times higher concentration. This showed that saliva has additional structure and organization not present in the purified MUC5B mucin and suggests there are other interactions and/or components within saliva that combine with MUC5B to produce its complete properties.