Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Honorary Professor
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Honorary Professor
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : International review of cell and molecular biology

Computational models of large-scale genome architecture

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in International review of cell and molecular biology - 01 Jan 2014

Rosa A, Zimmer C

Link to Pubmed [PMID] – 24380598

Int Rev Cell Mol Biol 2014;307:275-349

The spatial architecture and dynamics of the genomic material in the limited volume of the nucleus plays an important role in biological processes ranging from gene expression to DNA repair. Yet, detailed descriptions of dynamic genome architecture are still lacking and its governing principles and functional implications remain largely unknown. Powerful experimental methods have been developed to address this gap, including single-cell imaging and chromosome conformation capture methods, leading to rapidly growing quantitative data sets. Despite their importance, however, these data are insufficient to provide a full understanding of genome architecture and function. Computational models are becoming an increasingly indispensable complement in order to make sense of the experimental data and to allow a quantitative understanding of how chromosomes fold, move and interact. Here, we review efforts, developed over the last ~25 years, to model the large-scale 3D organization and dynamics of chromosomes or genomes quantitatively. We discuss models based on theories and simulations of polymer physics or computational reconstruction methods, highlighting similarities and differences between models, as well as limitations and possible improvements.

http://www.ncbi.nlm.nih.gov/pubmed/24380598