Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Melanie Blokesch, EPFL
Flagellated Vibrio cholerae
Publication : Journal of bacteriology

Comprehensive Functional Analysis of the 18 Vibrio cholerae N16961 Toxin-Antitoxin Systems Substantiates Their Role in Stabilizing the Superintegron

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of bacteriology - 20 Apr 2015

Iqbal N, Guérout AM, Krin E, Le Roux F, Mazel D

Link to Pubmed [PMID] – 25897030

J. Bacteriol. 2015 Jul;197(13):2150-9

The role of chromosomal toxin-antitoxin (TA) systems, which are ubiquitous within the genomes of free-living bacteria, is still debated. We have scanned the Vibrio cholerae N16961 genome for class 2 TA genes and identified 18 gene pair candidates. Interestingly, all but one are located in the chromosome 2 superintegron (SI). The single TA found outside the SI is located on chromosome 1 and is related to the well-characterized HipAB family, which is known to play a role in antibiotic persistence. We investigated this clustering within the SI and its possible biological consequences by performing a comprehensive functional analysis on all of the putative TA systems. We demonstrate that the 18 TAs identified encode functional toxins and that their cognate antitoxins are able to neutralize their deleterious effects when expressed in Escherichia coli. In addition, we reveal that the 17 predicted TA systems of the SI are transcribed and expressed in their native context from their own promoters, a situation rarely found in integron cassettes. We tested the possibility of interactions between noncognate pairs of all toxins and antitoxins and found no cross-interaction between any of the different TAs. Although these observations do not exclude other roles, they clearly strengthen the role of TA systems in stabilizing the massive SI cassette array of V. cholerae.