Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Melanie Blokesch, EPFL
Flagellated Vibrio cholerae
Publication : Genome research

Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Genome research - 01 Mar 2003

Rowe-Magnus DA, Guerout AM, Biskri L, Bouige P, Mazel D

Link to Pubmed [PMID] – 12618374

Genome Res. 2003 Mar;13(3):428-42

Integrons are natural tools for bacterial evolution and innovation. Their involvement in the capture and dissemination of antibiotic-resistance genes among Gram-negative bacteria is well documented. Recently, massive ancestral versions, the superintegrons (SIs), were discovered in the genomes of diverse proteobacterial species. SI gene cassettes with an identifiable activity encode proteins related to simple adaptive functions, including resistance, virulence, and metabolic activities, and their recruitment was interpreted as providing the host with an adaptive advantage. Here, we present extensive comparative analysis of SIs identified among the Vibrionaceae. Each was at least 100 kb in size, reaffirming the participation of SIs in the genome plasticity and heterogeneity of these species. Phylogenetic and localization data supported the sedentary nature of the functional integron platform and its coevolution with the host genome. Conversely, comparative analysis of the SI cassettes was indicative of both a wide range of origin for the entrapped genes and of an active cassette assembly process in these bacterial species. The signature attC sites of each species displayed conserved structural characteristics indicating that symmetry rather than sequence was important in the recognition of such a varied collection of target recombination sequences by a single site-specific recombinase. Our discovery of various addiction module cassettes within each of the different SIs indicates a possible role for them in the overall stability of large integron cassette arrays.

http://www.ncbi.nlm.nih.gov/pubmed/12618374