Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© J.M. Ghigo (Institut Pasteur) and Brigite Arbeille (LBC-ME. Faculté de Médecine de Tours)
Colorized scanning electron microscopy of an E. coli biofilm developing on a glass surface
Publication : Molecular Microbiology

BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular Microbiology - 01 Dec 2005

Latasa C, Roux A, Toledo-Arana A, Ghigo JM, Gamazo C, Penadés JR, Lasa I.

Link to Pubmed [PMID] – 16313619

Mol Microbiol. 2005 Dec;58(5):1322-39

In environmental settings, biofilms represent the common way of life of microorganisms. Salmonella enterica serovar Enteritidis, the most frequent cause of gastroenteritis in developed countries, produces a biofilm whose matrix is mainly composed of curli fimbriae and cellulose. In contrast to other bacterial biofilms, no proteinaceous compound has been reported to participate in the formation of this matrix. Here, we report the discovery of BapA, a large cell-surface protein required for biofilm formation by S. Enteritidis. Deletion of bapA caused the loss of the capacity to form a biofilm whereas the overexpression of a chromosomal copy of bapA increased the biofilm biomass formation. We provide evidence that overproduction of curli fimbriae and not cellulose can compensate for the biofilm deficiency of a bapA mutant strain. BapA is secreted through a type I protein secretion system (BapBCD) situated downstream of the bapA gene and was found to be loosely associated with the cell surface. Experiments with mixed bacterial populations positive or negative for BapA showed that BapA minus cells are not recruited into the biofilm matrix. The expression of bapA is coordinated with that of genes encoding curli fimbriae and cellulose, through the action of csgD. Studies on the contribution of BapA to S. Enteritidis pathogenesis revealed that orally inoculated animals with a bapA-deficient strain survived longer than those inoculated with the wild-type strain. Also, a bapA mutant strain showed a significantly lower colonization rate at the intestinal cell barrier and consequently a decreased efficiency for organ invasion compared with the wild-type strain. Taken together, these data demonstrate that BapA contributes both to biofilm formation and invasion through the regular Salmonella infection route.

http://www.ncbi.nlm.nih.gov/pubmed/16313619