Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Melanie Blokesch, EPFL
Flagellated Vibrio cholerae
Publication : Molecular microbiology

Bacterial resistance evolution by recruitment of super-integron gene cassettes

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular microbiology - 01 Mar 2002

Rowe-Magnus DA, Guerout AM, Mazel D

Link to Pubmed [PMID] – 11952913

Mol. Microbiol. 2002 Mar;43(6):1657-69

The capture and spread of antibiotic resistance determinants by integrons underlies the rapid evolution of multiple antibiotic resistance among diverse Gram-negative clinical isolates. The association of multiple resistance integrons (MRIs) with mobile DNA elements facilitates their transit across phylogenetic boundaries and augments the potential impact of integrons on bacterial evolution. Recently, ancestral chromosomal versions, the super-integrons (SIs), were found to be genuine components of the genomes of diverse bacterial species. SIs possess evolutionary characteristics and stockpiles of adaptive functions, including cassettes related to antibiotic resistance determinants previously characterized in clinical isolates, which suggest that MRIs and their resistance genes were originally recruited from SIs and their pool of amassed genes. However, the recombination activity of integrons has never been demonstrated in a bacterium other than Escherichia coli. We introduced a naturally occurring MRI (TpR, SulR) on a conjugative plasmid into Vibrio cholerae, a species known to harbour a SI. We show that MRIs can randomly recruit genes directly from the cache of SI cassettes. By applying a selective constraint for the development of antibiotic resistance, we demonstrate bacterial resistance evolution through the recruitment a novel, but phenotypically silent, chloramphenicol acetyltransferase gene from the V. cholerae SI and its precise insertion into the MRI. The resulting resistance profile (CmR, TpR, SulR) could then be disseminated by conjugation to other clinically relevant pathogens at high frequency. These results demonstrate that otherwise phenotypically sensitive strains may still be a genetic source for the evolution of resistance to clinically relevant antibiotics through integron-mediated recombination events.

http://www.ncbi.nlm.nih.gov/pubmed/11952913