Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Structural Dynamics Of Macromolecules
The structure of a bacterial analog of the nicotinic receptor (one color per subunit) inserted into the cell membrane (grey and orange). A representation of the volume accessible to ions is shown in yellow.
Publication : J. Mol. Biol.

Aspartyl tRNA-synthetase from Escherichia coli: flexibility and adaptability to the substrates.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in J. Mol. Biol. - 23 Jun 2000

Rees B, Webster G, Delarue M, Boeglin M, Moras D.

Link to Pubmed [PMID] – 10873442

Link to HAL – Click here

Link to DOI – 0.1006/jmbi.2000.3792

J Mol Biol. 2000 Jun 23;299(5):1157-64.

The crystal structure of aspartyl-tRNA synthetase from Escherichia coli has been determined to a resolution of 2.7 A. The structure is compared to the same enzyme co-crystallized with tRNA(Asp) and containing aspartyl adenylate or ATP. The asymmetric unit contains three monomers of the enzyme. While most parts of the protein show no significant differences in the three monomers, a few regions cannot be superimposed. Those regions are characterized by a high B-factor, and consist mostly of loops that make contacts with the tRNA in the complexes. The flexibility of the protein is seen at a global level, by the observation of a 10 to 15 degrees rotation of the N-terminal and insertion domains upon tRNA binding, and at the level of the individual amino acid residues, by main-chain and side-chain rearrangements. In contrast to these induced-fit conformational changes, a few residues essential for the tRNA anticodon or aspartyl-adenylate recognition exist in a predefined conformation, ensured by specific interactions within the protein.