Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Toxicon : official journal of the International Society on Toxinology

Antimicrobial activity of myotoxic phospholipases A2 from crotalid snake venoms and synthetic peptide variants derived from their C-terminal region

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Toxicon : official journal of the International Society on Toxinology - 01 Jun 2005

Santamaría C, Larios S, Angulo Y, Pizarro-Cerda J, Gorvel JP, Moreno E, Lomonte B

Link to Pubmed [PMID] – 15904676

Toxicon 2005 Jun;45(7):807-15

A short peptide derived from the C-terminal region of Bothrops asper myotoxin II, a Lys49 phospholipase A(2) (PLA(2)), was previously found to reproduce the bactericidal activity of its parent molecule. In this study, a panel of eight PLA(2) myotoxins purified from crotalid snake venoms, including both Lys49 and Asp49-type isoforms, were all found to express bactericidal activity, indicating that this may be a common action of the group IIA PLA(2) protein family. A series of 10 synthetic peptide variants, based on the original C-terminal sequence 115-129 of myotoxin II and its triple Tyr–>Trp substituted peptide p115-W3, were characterized. In vitro assays for bactericidal, cytolytic and anti-endotoxic activities of these peptides suggest a general correlation between the number of tryptophan substitutions introduced and microbicidal potency, both against Gram-negative (Salmonella typhimurium) and Gram-positive (Staphylococcus aureus) bacteria. Peptide variants with high bactericidal activity also tended to be more cytolytic towards skeletal muscle C2C12 myoblasts, thus limiting their potential in vivo use. However, the peptide variant pEM-2 (KKWRWWLKALAKK) showed reduced toxicity towards muscle cells, while retaining high bactericidal potency. This peptide also showed the highest endotoxin-neutralizing activity in vitro, and was shown to functionally interact with lipopolysaccharide (LPS) using a chimeric bacteria model. The bactericidal and anti-endotoxic properties of pEM-2, combined with its relatively low toxicity towards eukaryotic cells, highlight it as a promising candidate for further evaluation of its antimicrobial potential in vivo.