Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Methods in molecular biology (Clifton, N.J.)

Animal models to test hiPS-derived hepatocytes in the context of inherited metabolic liver diseases.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Methods in molecular biology (Clifton, N.J.) - 01 Jan 2014

Dusséaux M, Darche S, Strick-Marchand H,

Link to Pubmed [PMID] – 25173376

Link to DOI – 10.1007/978-1-4939-1453-1_8

Methods Mol Biol 2014 ; 1213(): 81-8

Human induced pluripotent stem (hiPS) cells are established following reprogramming of somatic cells from a wide variety of tissues. Given the scarcity of adult human hepatocytes, hiPS-derived hepatocytes would be a valuable source of cells to study differentiation programs, model patient-specific diseases, test drug toxicities, and cell transplantation therapies. Although hiPS-derived hepatocytes are extensively characterized in cell culture assays, testing these cells in animal models is necessary to fully evaluate their differentiation profile and their lack of tumorigenicity. Immunodeficient mouse models harboring liver damage are effective hosts in which xenogeneic hepatocytes can engraft, proliferate, and participate in liver regeneration, thus constituting a stringent test of hepatocyte functionality. The in vivo evaluation of disease-specific hiPS-derived hepatocytes should broaden our understanding of the cellular and molecular processes involved in inherited metabolic liver disease phenotypes. Herein, we detail our methods to test the functions of hiPS-derived hepatocytes in the context of the immunodeficient Rag2(-/-)IL2Rγc(-/-)Alb-uPAtg mouse model.