Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Molecular biology and evolution

Analysis of long repeats in bacterial genomes reveals alternative evolutionary mechanisms in Bacillus subtilis and other competent prokaryotes

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular biology and evolution - 01 Sep 1999

Rocha EP, Danchin A, Viari A

Link to Pubmed [PMID] – 10486977

Mol. Biol. Evol. 1999 Sep;16(9):1219-30

Prokaryotic genomes seem to be optimized toward compactness and have therefore been thought to lack long redundant DNA sequences. However, we identified a large number of long strict repeats in eight prokaryotic complete genomes and found that their density is negatively correlated with genome size. A detailed analysis of the long repeats present in the genome of Bacillus subtilis revealed a very strict constraint on the spatial distribution of repeats in this genome. We interpret this as the hallmark of selection processes leading to the addition of new genetic information. Such addition is independent of insertion sequences and relies on the nonspecific DNA uptake by the competent cell and its subsequent integration in the chromosome in a circular form through a Campbell-like mechanism. Similar patterns are found in other competent genomes of Gram-negative bacteria and Archaea, suggesting a similar evolutionary mechanism. The correlation of the spatial distribution of repeats and the absence of insertion sequences in a genome may indicate, in the framework of our model, that mechanisms aiming at their avoidance/elimination have been developed.

http://www.ncbi.nlm.nih.gov/pubmed/10486977