Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : PloS one

A constrained singular value decomposition method that integrates sparsity and orthogonality.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PloS one - 01 Jan 2019

Guillemot V, Beaton D, Gloaguen A, Löfstedt T, Levine B, Raymond N, Tenenhaus A, Abdi H,

Link to Pubmed [PMID] – 30865639

Link to DOI – e021146310.1371/journal.pone.0211463

PLoS One 2019 ; 14(3): e0211463

We propose a new sparsification method for the singular value decomposition-called the constrained singular value decomposition (CSVD)-that can incorporate multiple constraints such as sparsification and orthogonality for the left and right singular vectors. The CSVD can combine different constraints because it implements each constraint as a projection onto a convex set, and because it integrates these constraints as projections onto the intersection of multiple convex sets. We show that, with appropriate sparsification constants, the algorithm is guaranteed to converge to a stable point. We also propose and analyze the convergence of an efficient algorithm for the specific case of the projection onto the balls defined by the norms L1 and L2. We illustrate the CSVD and compare it to the standard singular value decomposition and to a non-orthogonal related sparsification method with: 1) a simulated example, 2) a small set of face images (corresponding to a configuration with a number of variables much larger than the number of observations), and 3) a psychometric application with a large number of observations and a small number of variables. The companion R-package, csvd, that implements the algorithms described in this paper, along with reproducible examples, are available for download from https://github.com/vguillemot/csvd.