Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Cellular microbiology

A combined luciferase imaging and reverse transcription polymerase chain reaction assay for the study of Leishmania amastigote burden and correlated mouse tissue transcript fluctuations

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Cellular microbiology - 16 Sep 2010

de La Llave E, Lecoeur H, Besse A, Milon G, Prina E, Lang T

Link to Pubmed [PMID] – 20846338

Cell. Microbiol. 2011 Jan;13(1):81-91

Laboratory mice display features of bona fide hosts for parasites such as Leishmania major and Leishmania donovani. Characterizing the amastigote population size fluctuations and the mouse transcript abundance accounting for these fluctuations demands the capacity to record in real time and integrate quantitative multiparametric datasets from the host tissues where these processes occur. To this end, two technologies, luciferase-expressing Leishmania imaging and a very sensitive quantitative analysis of both Leishmania and mouse transcripts, were combined. After the inoculation of either L. major or L. donovani, the amastigote population size fluctuations – increase, plateau and reduction – were monitored by bioluminescence. It allowed a limited number of mice to be selected for further analysis of both mouse and amastigote transcripts using the real-time quantitative polymerase chain reaction assay we set up. The illustrative examples displayed in the present analysis highlight a correlation between the transcriptional signatures displayed by mouse tissues with the amastigote burden fluctuations. We argue that these two combined technologies will have the potential to provide further insights on complex phenotypes driven by Leishmania developmental programs in the tissues of the mammal hosts.