Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Honorary Professor
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Honorary Professor
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Melanie Blokesch, EPFL
Flagellated Vibrio cholerae
Publication : Methods in cell biology

A bacterial antibiotic resistance accelerator and applications.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Methods in cell biology - 01 Jan 2018

Bos J, Austin RH,

Link to Pubmed [PMID] – 30165962

Link to DOI – S0091-679X(18)30068-210.1016/bs.mcb.2018.06.005

Methods Cell Biol 2018 ; 147(): 41-57

The systematic emergence of drug resistance remains a major problem in the treatment of infectious diseases (antibiotics) and cancer (chemotherapy), with possible common fundamental origins linking bacterial antibiotic resistance and emergence of chemotherapy resistance. The common link may be evolution in a complex fitness landscape with connected small population niches. We report a detailed method for observing bacterial adaptive behavior in heterogeneous microfluidic environment designed to mimic the environmental heterogeneity found in natural microbial niches. First, the device is structured with multiple connected micro-chambers that allow the cell population to communicate and organize into smaller populations. Second, bacteria evolve within an antibiotic gradient generated throughout the micro-chambers that creates a wide range of fitness landscapes. High-resolution images of the adaptive response to the antibiotic stress are captured by epifluorescence microscopy at various levels of the bacterial organization for quantitative analysis. Thus, the experimental setup we have developed provides a powerful frame for visualizing evolution at work: bacterial movement, survival and death. It also presents a basis for exploring the rates at which drug resistance arises in bacteria and other biological contexts such as cancer.

https://pubmed.ncbi.nlm.nih.gov/30165962