Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Antoinette Ryter
Serratia marcescens avec présence de flagelles (cils) péritriches. Famille des Enterobacteriaceae, bacille à Gram négatif, non sporulé, anaérobie facultatif, mobile, parfois encapsulé, pouvant synthétiser un pigment rouge ou rose. Présent dans les végétaux , le sol, et l'eau. A l'origine d'infections nosocomiales et résistant à de nombreux antibiotiques. Image colorisée.
Project

ERC CoG: In situ genetic perturbation of gut bacteria with engineered phage vectors and CRISPR

Scientific Fields
Diseases
Organisms
Applications
Technique
Starting Date
01
Sep 2022
Ending Date
01
Sep 2027
Status
Ongoing
Members
1
Structures
1

About

Humans live in a symbiotic relationship with trillions of microorganisms that inhabit our bodies and play an important role in health and disease. There is a growing interest in manipulating the microbiome to improve health, yet we currently lack the knowledge and technology to carry out precise interventions. The objective of this proposal is to enable efficient in situ genetic perturbations of bacteria in the gut environment by developing the next generation of synthetic biology tools based on bacteriophage delivery vectors and CRISPR-Cas systems. The first aim is to establish a collection of genetically amenable bacteria of the human gut and the associated vectors. This will be achieved by delivering large combinatorial libraries of vectors to complex bacterial communities followed by the high-throughput identification and isolation of successfully modified bacteria. We will also identify bacterial defense systems against horizontal gene transfer and methods to bypass them. The second aim is to engineer and evolve phage vectors to deliver custom genetic circuits to the microbiome, using two main approaches: the construction of chimeric phage capsids, and the in vivo targeted mutagenesis of phage host range determinants using diversity generating retro-elements. The third aim is to perform in situ genetic perturbations in the gut environment using CRISPR-Cas tools. We will evaluate the efficiency and specificity of our phage vectors in the animal gut environment. Finally we will use our phage vectors to deliver CRISPR-Cas systems to bacteria in the mouse gut and perform forward genetic screens. This will shed light on the genetic requirements for growth in the gut and on the niche occupied by different members of the microbiome. Altogether, the knowledge and technologies developed in this project will be instrumental both to further our understanding of the gut microbiome and for the development of future microbiome targeted therapies.

Fundings