Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Deriano Lab / Institut Pasteur
Chromosomes métaphasiques d’une cellule lymphoïde cancéreuse présentant une amplification des gènes Igh et c-myc
Starting Date
01
Jan 2012
Ending Date
31
Dec 2018
Status
Ongoing
Members
2
Structures
1

About

  B and T cell lymphoid cancers are among the most common human malignancies. Many factors, endogenous and exogenous, are implicated in the etiology of these disorders, but key oncogenic lesions often arise through chromosomal translocations involving antigen receptor loci. These events frequently shows signs of having originated through a variety of errors in RAG1/2 protein-mediated V(D)J recombination. While there are several theoretical possibilities to explain various mechanisms through which such errors occur – lymphocyte development arrest at stages of antigen receptor diversification, recombination errors due to aberrant RAG-, DNA repair-, DDR-activities, etc. –, there has yet to be functional cancer model organisms to test these hypotheses. We use a series of mouse models harboring defects in DNA double strand break regulation, and as a consequence readily develop B- and T-cell tumors. These lymphomas contain numerous genomic aberrations reminiscent of human malignancies. We apply a combination of genomic, transcriptomic, computational and genetic screening approaches to understand the basic nature of genome instability in developing lymphocytes and to identify the genomic lesions and oncogenic pathways underlying lymphomagenesis.   From a general perspective, our studies will provide new insights into the mechanisms of DNA rearrangements, DNA repair, genome stability and tumor biology.   lab_activities.png