Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Structural Dynamics Of Macromolecules
The structure of a bacterial analog of the nicotinic receptor (one color per subunit) inserted into the cell membrane (grey and orange). A representation of the volume accessible to ions is shown in yellow.
Publication : Pac Symp Biocomput.

The inverse protein folding problem: self-consistent mean field optimisation of a structure specific mutation matrix.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Pac Symp Biocomput. - 01 Jun 1997

Delarue M, Koehl P.

Link to Pubmed [PMID] – 9390284

Link to HAL – Click here

Pac Symp Biocomput. 1997:109-21.

The goal of the inverse folding problem is to supply a list of sequences compatible with a known protein structure. If two-body interactions are taken into account in energy calculations, an exhaustive exploration of the energy landscape in sequence space cannot be achieved because of the huge number of possible combinations. To circumvent this problem, we propose a method in which multiple copies corresponding to every possible side-chain type are attached to each C alpha position in the protein. The weights of each copy (stored in the sequence matrix SM) are refined using mean field theory: each side-chain copy interacts with the mean field generated by all possible side-chain copies at neighbouring positions, weighted by their respective probabilities. The potential energy is simply taken to be amino acid pair potentials of mean force. The method converges in a few cycles to a self-consistent solution. The refined matrix does not depend on the starting point; therefore the method succeeds in removing memory effects. Starting solely from the backbone of the known structure, and without information from the initial sequence, the final sequence matrix SM is shown to be able to retrieve significant sequence information, as observed through a series of structure-recognizes-sequence(s) computer experiments. The issue of specificity is discussed in detail.