Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Journal of molecular biology

Amyloid aggregation on lipid bilayers and its impact on membrane permeability

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of molecular biology - 24 Dec 2008

Friedman R, Pellarin R, Caflisch A

Link to Pubmed [PMID] – 19133272

J. Mol. Biol. 2009 Mar;387(2):407-15

Fibrillar protein aggregates (amyloids) are involved in several common pathologies, e.g., Alzheimer’s disease and type II diabetes. Accumulating evidence suggests that toxicity in amyloid-related diseases originates from the deposition of protein aggregates on the cell membrane, which results in bilayer disruption and cell leakage. The molecular mechanism of damage to the membrane, however, is still obscure. To shed light on it we have performed coarse-grained molecular dynamics simulations of fibril-forming amphipathic peptides in the presence of lipid vesicles. The simulation results show that highly amyloidogenic peptides fibrillate on the surface of the vesicle, damaging the bilayer and promoting leakage. In contrast, the ordered aggregation of peptides with low amyloidogenicity is hindered by the vesicles. Remarkably, leakage from the vesicle is caused by growing aggregates, but not mature fibrils. The simulation results provide a basis for understanding the range of aggregation behavior that is observed in experiments with fibril-forming (poly)peptides.