Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : PloS one

Original encounter with antigen determines antigen-presenting cell imprinting of the quality of the immune response in mice

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PloS one - 07 Dec 2009

Abadie V, Bonduelle O, Duffy D, Parizot C, Verrier B, Combadière B

Link to Pubmed [PMID] – 19997562

PLoS ONE 2009;4(12):e8159

BACKGROUND: Obtaining a certain multi-functionality of cellular immunity for the control of infectious diseases is a burning question in immunology and in vaccine design. Early events, including antigen shuttling to secondary lymphoid organs and recruitment of innate immune cells for adaptive immune response, determine host responsiveness to antigens. However, the sequence of these events and their impact on the quality of the immune response remain to be elucidated. Here, we chose to study Modified Vaccinia virus Ankara (MVA) which is now replacing live Smallpox vaccines and is proposed as an attenuated vector for vaccination strategies against infectious diseases.

METHODOLOGY/PRINCIPAL FINDINGS: We analyzed in vivo mechanisms triggered following intradermal (i.d.) and intramuscular (i.m.) Modified Vaccinia virus Ankara (MVA) administration. We demonstrated significant differences in the antigen shuttling to lymphoid organs by macrophages (MPhis), myeloid dendritic cells (DCs), and neutrophils (PMNs). MVA i.d. administration resulted in better antigen distribution and more sustained antigen-presenting cells (APCs) recruitment into draining lymph nodes than with i.m. administration. These APCs, which comprise both DCs and MPhis, were differentially involved in T cell priming and shaped remarkably the quality of cytokine-producing virus-specific T cells according to the entry route of MVA.

CONCLUSIONS/SIGNIFICANCE: This study improves our understanding of the mechanisms of antigen delivery and their consequences on the quality of immune responses and provides new insights for vaccine development.