Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Journal of clinical microbiology

Multilocus sequence typing reveals that the population structure of Candida dubliniensis is significantly less divergent than that of Candida albicans

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of clinical microbiology - 05 Dec 2007

McManus BA, Coleman DC, Moran G, Pinjon E, Diogo D, Bougnoux ME, Borecká-Melkusova S, Bujdákova H, Murphy P, d'Enfert C, Sullivan DJ

Link to Pubmed [PMID] – 18057125

J. Clin. Microbiol. 2008 Feb;46(2):652-64

The pathogenic yeast Candida dubliniensis is phylogenetically very closely related to Candida albicans, and both species share many phenotypic and genetic characteristics. DNA fingerprinting using the species-specific probe Cd25 and sequence analysis of the internal transcribed spacer (ITS) region of the ribosomal gene cluster previously showed that C. dubliniensis is comprised of three major clades comprising four distinct ITS genotypes. Multilocus sequence typing (MLST) has been shown to be very useful for investigating the epidemiology and population biology of C. albicans and has identified many distinct major and minor clades. In the present study, we used MLST to investigate the population structure of C. dubliniensis for the first time. Combinations of 10 loci previously tested for MLST analysis of C. albicans were assessed for their discriminatory ability with 50 epidemiologically unrelated C. dubliniensis isolates from diverse geographic locations, including representative isolates from the previously identified three Cd25-defined major clades and the four ITS genotypes. Dendrograms created by using the unweighted pair group method with arithmetic averages that were generated using the data from all 10 loci revealed a population structure which supports that previously suggested by DNA fingerprinting and ITS genotyping. The MLST data revealed significantly less divergence within the C. dubliniensis population examined than within the C. albicans population. These findings show that MLST can be used as an informative alternative strategy for investigating the population structure of C. dubliniensis. On the basis of the highest number of genotypes per variable base, we recommend the following eight loci for MLST analysis of C. dubliniensis: CdAAT1b, CdACC1, CdADP1, CdMPIb, CdRPN2, CdSYA1, exCdVPS13, and exCdZWF1b, where “Cd” indicates C. dubliniensis and “ex” indicates extended sequence.