Lien vers Pubmed [PMID] – 11167846
Br. J. Haematol. 2001 Feb;112(2):449-58
To evaluate the functional conservation of signal transduction mechanisms between haematopoietic receptors and to characterize the molecules activated in this phenomenon, we introduced granulocyte colony-stimulating factor receptor (G-CSFR) cDNA into mouse fetal liver cells using a retroviral vector. In semi-solid medium assays, G-CSFR-infected cells gave rise to all types of colonies [granulocyte-macrophage (GM), megakaryocyte (MK) and mixed lineage (GEMM) colony-forming units (CFU) and erythroid burst-forming units (BFU-E)] in the presence of G-CSF alone. The direct effect of G-CSF on erythroid differentiation of G-CSFR-transduced erythroid progenitors was demonstrated by the development of erythroid colonies using G-CSFR-expressing Lin- cells cloned at one cell per well in liquid culture in the presence of G-CSF. Interestingly, while Stat5, but not Stat3, was activated in erythroid cells in response to erythropoietin (EPO), both were activated in erythroid and granulocytic cells stimulated by G-CSF. Furthermore, G-CSF induced the growth of erythroid colonies from G-CSFR-expressing fetal liver cells from EPO receptor-/- (EPO-R-/-) or Stat5a-/- Stat5b-/- mice, demonstrating that erythroid differentiation can occur in the absence of EPO-R or Stat5. These data show that forced expression of G-CSFR allows G-CSF-dependent multilineage proliferation and differentiation of haematopoietic progenitors and rescues EPO-R-/- erythroid cells. While G-CSF induces Stat5 activation in G-CSFR-expressing erythroid cells, this activation is not necessary for the terminal erythroid differentiation induced by G-CSF.