Lien vers Pubmed [PMID] – 11483496
EMBO J. 2001 Aug;20(15):3928-37
The oligomeric bifunctional HPr kinase/P-Ser-HPr phosphatase (HprK/P) regulates many metabolic functions in Gram-positive bacteria by phosphorylating the phosphocarrier protein HPr at Ser46. We isolated Lactobacillus casei hprK alleles encoding mutant HprK/Ps exhibiting strongly reduced phosphatase, but almost normal kinase activity. Two mutations affected the Walker motif A of HprK/P and four a conserved C-terminal region in contact with the ATP-binding site of an adjacent subunit in the hexamer. Kinase and phosphatase activity appeared to be closely associated and linked to the Walker motif A, but dephosphorylation of seryl-phosphorylated HPr (P-Ser-HPr) is not simply a reversal of the kinase reaction. When the hprKV267F allele was expressed in Bacillus subtilis, the strongly reduced phosphatase activity of the mutant enzyme led to increased amounts of P-Ser-HPr. The hprKV267F mutant was unable to grow on carbohydrates transported by the phosphoenolpyruvate:glycose phosphotransferase system (PTS) and on most non-PTS carbohydrates. Disrupting ccpA relieved the growth defect only on non-PTS sugars, whereas replacing Ser46 in HPr with alanine also restored growth on PTS substrates.