-
2024Chlamydia-driven ISG15 expression dampens the immune response of epithelial cells independently of ISGylation., mBio 2024 Sep; (): e0240124.
-
2022PI4P and BLOC-1 remodel endosomal membranes into tubules., J Cell Biol 2022 Nov; 221(11):e202110132.
-
2022Chlamydia trachomatis development requires both host glycolysis and oxidative phosphorylation but has only minor effects on these pathways., J Biol Chem 2022 Aug; 298(9): 102338.
-
2022CT295 Is Chlamydia trachomatis’ Phosphoglucomutase and a Type 3 Secretion Substrate., Front Cell Infect Microbiol 2022 ; 12(): 866729.
-
2021A Protein-Engineered, Enhanced Yeast Display Platform for Rapid Evolution of Challenging Targets., ACS Synth Biol 2021 Dec; 10(12): 3445-3460.
-
2021ATG16L1 functions in cell homeostasis beyond autophagy., FEBS J 2022 Apr; 289(7): 1779-1800.
-
2021Primary ectocervical epithelial cells display lower permissivity to Chlamydia trachomatis than HeLa cells and a globally higher pro-inflammatory profile., Sci Rep 2021 03; 11(1): 5848.
-
2020The Chlamydia effector CT622/TaiP targets a nonautophagy related function of ATG16L1., Proc Natl Acad Sci U S A 2020 10; 117(43): 26784-26794.
-
2020Infection-driven activation of transglutaminase 2 boosts glucose uptake and hexosamine biosynthesis in epithelial cells., EMBO J 2020 04; 39(8): e102166.
-
2020Chlamydia-induced curvature of the host-cell plasma membrane is required for infection, Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2634-2644.
-
2019Make It a Sweet Home: Responses of to the Challenges of an Intravacuolar Lifestyle, Microbiol Spectr 2019 03;7(2).
-
2018The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces Infectivity and Growth, Front Cell Infect Microbiol 2018;8:145.
-
2017Biotic Host-Pathogen Interactions As Major Drivers of Plastid Endosymbiosis, Trends Plant Sci. 2017 Jan;.
-
2016The DUF582 proteins of Chlamydia trachomatis bind to components of the ESCRT machinery, which is dispensable for bacterial growth in vitro., Front Cell Infect Microbiol. 2016 Sept;in press.
-
2016Sequestration of host metabolism by an intracellular pathogen, Elife 2016 Mar;5:e12552.
-
2014Massive expansion of Ubiquitination-related gene families within the Chlamydiae, Mol. Biol. Evol. 2014 Nov;31(11):2890-904.
-
2014Biochemical and structural insights into microtubule perturbation by CopN from Chlamydia pneumoniae, J. Biol. Chem. 2014 Sep;289(36):25199-210.
-
2014Quantitative monitoring of the Chlamydia trachomatis developmental cycle using GFP-expressing bacteria, microscopy and flow cytometry, PLoS ONE 2014;9(6):e99197.
-
2014Editorial overview: Host-microbe interactions: bacteria. War and peace: the fragile equilibrium between bacteria and host, Curr. Opin. Microbiol. 2014 Feb;17:v-vii.
-
2014The intracellular bacteria Chlamydia hijack peroxisomes and utilize their enzymatic capacity to produce bacteria-specific phospholipids, PLoS ONE 2014;9(1):e86196.
-
2013Exploitation of host lipids by bacteria, Curr. Opin. Microbiol. 2014 Feb;17:38-45.
-
2013Tracing the primordial Chlamydiae: extinct parasites of plants?, Trends Plant Sci. 2014 Jan;19(1):36-43.
-
2013The chlamydial OTU domain-containing protein ChlaOTU is an early type III secretion effector targeting ubiquitin and NDP52, Cell. Microbiol. 2013 Dec;15(12):2064-79.
-
2013Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis?, Plant Cell 2013 Jan;25(1):7-21.
-
2012Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division, Mol. Microbiol. 2012 Jul;85(1):164-78.
-
2012Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta., PLoS One 2012 ; 7(6): e39080.
-
2011Rerouting of host lipids by bacteria: are you CERTain you need a vesicle?, PLoS Pathog. 2011 Sep;7(9):e1002208.
-
2011Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins, BMC Genomics 2011;12:109.
-
2010Identification of a family of effectors secreted by the type III secretion system that are conserved in pathogenic Chlamydiae, Infect. Immun. 2011 Feb;79(2):571-80.
-
2010Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis, PLoS Pathog. 2010;6(7):e1000995.
-
2009Production of reactive oxygen species is turned on and rapidly shut down in epithelial cells infected with Chlamydia trachomatis, Infect. Immun. 2010 Jan;78(1):80-7.
-
2009Small molecule inhibitors of the Yersinia type III secretion system impair the development of Chlamydia after entry into host cells, BMC Microbiol. 2009;9:75.
-
2008SNARE protein mimicry by an intracellular bacterium, PLoS Pathog. 2008 Mar;4(3):e1000022.
-
2006Development of a real-time PCR for the detection of Chlamydia psittaci, J. Med. Microbiol. 2006 Apr;55(Pt 4):471-3.
-
2006Re: Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas, J. Natl. Cancer Inst. 2006 Mar;98(5):365-6.
-
2006Correlation between Chlamydia pneumoniae detection from coronary angioplasty balloons and atherosclerosis severity, J. Am. Coll. Cardiol. 2006 Mar;47(6):1229-31.
-
2005Recent insights into the mechanisms of Chlamydia entry, Cell. Microbiol. 2005 Dec;7(12):1714-22.
-
2005A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates, Mol. Microbiol. 2005 Jun;56(6):1636-47.
-
2005ARF6 GTPase controls bacterial invasion by actin remodelling, J. Cell. Sci. 2005 May;118(Pt 10):2201-10.
-
2004Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes, J. Biol. Chem. 2004 Nov;279(45):46896-906.
-
2004Analysis of Chlamydia caviae entry sites and involvement of Cdc42 and Rac activity, J. Cell. Sci. 2004 Aug;117(Pt 17):3923-33.
-
2004Chlamydia: five years A.G. (after genome), Curr. Opin. Microbiol. 2004 Feb;7(1):85-92.