Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of immunology (Baltimore, Md. : 1950)

Variation of LPS-binding capacity, epitope expression, and shedding of membrane-bound CD14 during differentiation of human monocytes

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of immunology (Baltimore, Md. : 1950) - 01 Aug 1995

Pedron T, Girard R, Chaby R

Link to Pubmed [PMID] – 7543522

J. Immunol. 1995 Aug;155(3):1460-71

The myeloid differentiation Ag CD14 is considered to play a critical role in the binding of LPS to monocytes. To determine if differences in LPS-binding capacities of cells could reflect a variability of CD14 molecules, we analyzed the interactions of various reagents with these molecules in human blood monocytes and in promyelocytic (HL60) and monocytic (THP-1) cell lines. The expression of CD14 epitopes was analyzed with the fluorescent anti-CD14 mAbs My4 and LeuM3. Expression of LPS-binding sites (LPS+ molecules) was detected with LPS-FITC. THP-1 cells stimulated with calcitriol (VitD3), as well as the majority of blood monocytes (50-90%) were My4+/LPS+. However, untreated THP-1 cells, and a substantial population (10-50%) of human monocytes from healthy donors, were My4+/LPS-, thus suggesting the existence of CD14 isoforms with different LPS-binding capacities. In line with this assumption, monocytes stimulated with PMA selectively shed LeuM3+ molecules, but almost no My4+ and LPS+ constituents. Analysis of monocytes after treatment with phosphatidylinositol-specific phospholipase C indicated that among CD14 molecules with LPS-binding capacity, some are susceptible and others are resistant to the enzyme, each type being mainly expressed by a different monocyte subset. Studies of uninduced and chemically induced THP-1 cells showed that wheat-germ agglutinin blocked the binding of My4 to constitutive, but not to chemically inducible CD14. The overall results suggest the existence of at least three different forms of CD14, which may reflect different stages of cell maturation.

http://www.ncbi.nlm.nih.gov/pubmed/7543522