Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Thierry Blisnick & Philippe Bastin, Institut Pasteur
Bloodstream Trypanosoma brucei cell
Publication : Molecular pharmacology

Use of penetrating peptides interacting with PP1/PP2A proteins as a general approach for a drug phosphatase technology

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular pharmacology - 30 Dec 2005

Guergnon J, Dessauge F, Dominguez V, Viallet J, Bonnefoy S, Yuste VJ, Mercereau-Puijalon O, Cayla X, Rebollo A, Susin SA, Bost PE, Garcia A

Link to Pubmed [PMID] – 16387795

Mol. Pharmacol. 2006 Apr;69(4):1115-24

Protein phosphatase types 1 (PP1) and 2A (PP2A) represent two major families of serine/threonine protein phosphatases that have been implicated in the regulation of many cellular processes, including cell growth and apoptosis in mammalian cells. PP1 and PP2A proteins are composed of oligomeric complexes comprising a catalytic structure (PP1c or PP2AC) containing the enzymatic activity and at least one more interacting subunit. The binding of different subunits to a catalytic structure generates a broad variety of holoenzymes. We showed here that casein kinase 2alpha (Ck2alpha) and simian virus 40 small t antigen share a putative common beta-strand structure required for PP2A1 trimeric holoenzyme binding. We have also characterized DPT-sh1, a short basic peptide from Ck2alpha that interacted only in vitro with the PP2A-A subunit and behaves as a nontoxic penetrating shuttle in several cultivated human cell lines and chick embryos. In addition, DPT-sh1 specifically accumulated in human red cells infected with Plasmodium falciparum malaria parasites. We therefore designed bipartite peptides containing DPT-sh1 and PP1- or PP2A-interacting sequences. We found that DPT-5, a DPT-sh1-derived peptide containing a short sequence identified in CD28 antigen, interacts with PP2A-Balpha, and DPT-7, another DPT-sh1-derived peptide containing a short sequence identified in Bad as a PP1 catalytic consensus docking motif, induce apoptosis in cultivated cell lines. These results clearly indicate that the rational design of PP1/PP2A interacting peptides is a pertinent strategy to deregulate intracellular survival pathways.

http://www.ncbi.nlm.nih.gov/pubmed/16387795