Link to Pubmed [PMID] – 37943504
Link to DOI – 10.2807/1560-7917.ES.2023.28.45.2200913
Euro Surveill 2023 Nov; 28(45):
BackgroundVarious pathogens, including bacteria, fungi, parasites, and viruses can lead to meningitis. Among viruses causing meningitis, Toscana virus (TOSV), a phlebovirus, is transmitted through sandfly bites. TOSV infection may be suspected if patients with enterovirus- and herpesvirus-negative aseptic (non-bacterial) meningitis recall recent insect bites. Other epidemiological factors (season, rural area) may be considered. The broad range of possible meningitis aetiologies poses considerable diagnosis challenges. Untargeted metagenomic next-generation sequencing (mNGS) can potentially identify pathogens, which are not considered or detected in routine diagnostic panels.AimIn this retrospective, single-centre observational study, we investigated mNGS usefulness to understand the cause of meningitis when conventional approaches fail.MethodsCerebrospinal fluid (CSF) samples from patients hospitalised in southern Spain in 2015-2019 with aseptic meningitis and no aetiology found by conventional testing, were subjected to mNGS. Patients’ demographic characteristics had been recorded and physicians had asked them about recent insect bites. Obtained viral genome sequences were phylogenetically analysed.ResultsAmong 23 idiopathic cases, TOSV was identified in eight (all male; median age: 39 years, range: 15-78 years). Five cases lived in an urban setting, three occurred in autumn and only one recalled insect bites. Phylogenetic analysis of TOSV segment sequences supported one intra-genotype reassortment event.ConclusionsOur study highlights the usefulness of mNGS for identifying viral pathogens directly in CSF. In southern Spain, TOSV should be considered regardless of recalling of insect bites or other epidemiological criteria. Detection of a disease-associated reassortant TOSV emphasises the importance of monitoring the spread and evolution of phleboviruses in Mediterranean countries.