Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Perthame&Millot
saber_background_image
Publication : Journal of nanobiotechnology

Tri-mannose grafting of chitosan nanocarriers remodels the macrophage response to bacterial infection

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of nanobiotechnology - 25 Jan 2019

Coya JM, De Matteis L, Giraud-Gatineau A, Biton A, Serrano-Sevilla I, Danckaert A, Dillies MA, Gicquel B, De la Fuente JM, Tailleux L

Link to Pubmed [PMID] – 30683129

J Nanobiotechnology 2019 Jan;17(1):15

BACKGROUND: Infectious diseases are still a leading cause of death and, with the emergence of drug resistance, pose a great threat to human health. New drugs and strategies are thus urgently needed to improve treatment efficacy and limit drug-associated side effects. Nanotechnology-based drug delivery systems are promising approaches, offering hope in the fight against drug resistant bacteria. However, how nanocarriers influence the response of innate immune cells to bacterial infection is mostly unknown.

RESULTS: Here, we used Mycobacterium tuberculosis as a model of bacterial infection to examine the impact of mannose functionalization of chitosan nanocarriers (CS-NCs) on the human macrophage response. Both ungrafted and grafted CS-NCs were similarly internalized by macrophages, via an actin cytoskeleton-dependent process. Although tri-mannose ligands did not modify the capacity of CS-NCs to escape lysosomal degradation, they profoundly remodeled the response of M. tuberculosis-infected macrophages. mRNA sequencing showed nearly 900 genes to be differentially expressed due to tri-mannose grafting. Unexpectedly, the set of modulated genes was enriched for pathways involved in cell metabolism, particularly oxidative phosphorylation and sugar metabolism.

CONCLUSIONS: The ability to modulate cell metabolism by grafting ligands at the surface of nanoparticles may thus be a promising strategy to reprogram immune cells and improve the efficacy of encapsulated drugs.