Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of computational biology : a journal of computational molecular cell biology

Towards optimally multiplexed applications of universal arrays

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of computational biology : a journal of computational molecular cell biology - 01 Jan 2004

Ben-Dor A, Hartman T, Karp RM, Schwikowski B, Sharan R, Yakhini Z

Link to Pubmed [PMID] – 15285903

J. Comput. Biol. 2004;11(2-3):476-92

We study a design and optimization problem that occurs, for example, when single nucleotide polymorphisms (SNPs) are to be genotyped using a universal DNA tag array. The problem of optimizing the universal array to avoid disruptive cross-hybridization between universal components of the system was addressed in previous work. Cross-hybridization can, however, also occur assay specifically, due to unwanted complementarity involving assay-specific components. Here we examine the problem of identifying the most economic experimental configuration of the assay-specific components that avoids cross-hybridization. Our formalization translates this problem into the problem of covering the vertices of one side of a bipartite graph by a minimum number of balanced subgraphs of maximum degree 1. We show that the general problem is NP-complete. However, in the real biological setting, the vertices that need to be covered have degrees bounded by d. We exploit this restriction and develop an O(d)-approximation algorithm for the problem. We also give an O(d)-approximation for a variant of the problem in which the covering subgraphs are required to be vertex disjoint. In addition, we propose a stochastic model for the input data and use it to prove a lower bound on the cover size. We complement our theoretical analysis by implementing two heuristic approaches and testing their performance on synthetic data as well as on simulated SNP data.