Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Marie Prévost, Institut Pasteur
Image of a portion of a Xenopus oocyte expressing a channel receptor.
Publication : Biochemical and biophysical research communications

The neurotoxic phospholipase A2 associates, through a non-phosphorylated binding motif, with 14-3-3 protein gamma and epsilon isoforms

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Biochemical and biophysical research communications - 21 Mar 2003

Sribar J, Sherman NE, Prijatelj P, Faure G, Gubensek F, Fox JW, Aitken A, Pungercar J, Krizaj I

Link to Pubmed [PMID] – 12646224

Biochem. Biophys. Res. Commun. 2003 Mar;302(4):691-6

Two novel acceptors for ammodytoxin C, a presynaptically neurotoxic phospholipase A(2) from snake venom, have been purified from porcine cerebral cortex by a toxin-affinity-based procedure. Using tandem mass spectrometry, the isolated acceptors were identified as 14-3-3 gamma and epsilon isoforms, highly conserved cytoplasmic proteins involved in the regulation of numerous physiological processes. The interaction between ammodytoxin C and 14-3-3 proteins is direct and not mediated by calmodulin, a high-affinity acceptor for both ammodytoxin C and 14-3-3 proteins, as demonstrated in pull-down experiments and by surface plasmon resonance. The latter technique gave an apparent dissociation constant of 1.0+/-0.2 microM for the interaction between chip-immobilized 14-3-3 and ammodytoxin C. 14-3-3 usually interacts with proteins through specific phospho-Ser/Thr motifs. Ammodytoxin C is not a phospho-protein, therefore the interaction must occur through a non-phosphorylated binding site, most probably the KEESEK sequence at its C-terminal end. The interaction we describe suggests an explanation for the pathophysiological effects evoked by some secreted phospholipases A(2), such as the inhibition of protein phosphorylation, of terminal ion currents, and of neurotransmission, as well as the initiation of neuronal cell death, all processes regulated by 14-3-3 proteins.