Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© K. Melican.
Human microvessel (red) colonized by N. meningitidis (green).
Publication : Infection and immunity

The meningococcal minor pilin PilX is responsible for type IV pilus conformational changes associated with signaling to endothelial cells

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Infection and immunity - 09 Jul 2012

Brissac T, Mikaty G, Duménil G, Coureuil M, Nassif X

Link to Pubmed [PMID] – 22778100

Infect. Immun. 2012 Sep;80(9):3297-306

Neisseria meningitidis crosses the blood-brain barrier (BBB) following the activation of the β2-adrenergic receptor by the type IV pili (TFP). Two components of the type IV pili recruit the β2-adrenergic receptor, the major pilin PilE and the minor pilin PilV. Here, we report that a strain deleted of PilX, one of the three minor pilins, is defective in endothelial cell signaling. The signaling role of PilX was abolished when pili were not retractable. Purified PilX was unable to recruit the β2-adrenergic receptor, thus suggesting that PilX was playing an indirect role in endothelial cell signaling. Considering the recent finding that type IV pili can transition into a new conformation (N. Biais, D. L. Higashi, J. Brujic, M. So, and M. P. Sheetz, Proc. Natl. Acad. Sci. U. S. A. 107:11358-11363, 2010), we hypothesized that PilX was responsible for a structural modification of the fiber and allowed hidden epitopes to be exposed. To confirm this hypothesis, we showed that a monoclonal antibody which recognizes a linear epitope of PilE bound fibers only when bacteria adhered to endothelial cells. On the other hand, this effect was not observed in PilX-deleted pili. A deletion of a region of PilX exposed on the surface of the fiber had phenotypical consequences identical to those of a PilX deletion. These data support a model in which surface-exposed motifs of PilX use forces generated by pilus retraction to promote conformational changes required for TFP-mediated signaling.