Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Biochemistry

The marine natural product adociasulfate-2 as a tool to identify the MT-binding region of kinesins

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Biochemistry - 01 Dec 2006

Brier S, Carletti E, DeBonis S, Hewat E, Lemaire D, Kozielski F

Link to Pubmed [PMID] – 17176086

Biochemistry 2006 Dec;45(51):15644-53

Kinesins are molecular motors that transport cargo along microtubules (MTs). To move forward the motor must attach to the MT in a defined orientation and detach from it in a process that is driven by ATP hydrolysis. The knowledge of the motor-MT interface is essential for a detailed understanding of how kinesins move along MTs and how they are related to other molecular motors such as myosins or dyneins. We have used the marine natural product adociasulfate-2 (AS-2), previously identified as a MT-competitive inhibitor of conventional kinesin, to infer the secondary structure elements forming the MT interface of two human mitotic kinesins, namely, CENP-E and Eg5. AS-2 inhibits both basal and MT-stimulated ATPase activities of CENP-E (IC50 of 8.6 and 1.3 microM, respectively) and Eg5 (IC50 of 3.5 and 5.3 microM, respectively) and is a MT-competitive inhibitor of CENP-E with a Ki of 0.35 microM. Binding of AS-2 to CENP-E also stimulates the ADP release from the nucleotide-binding pocket. AS-2 is a nonspecific kinesin inhibitor targeting several superfamily members including KHC, MPP1, MKLP1, RabK6, KIFC1, KIFC3, CENP-E, and Eg5. By measuring hydrogen/deuterium exchange with mass spectrometry we have shown that the formation of the CENP-E/AS-2 complex decreases the solvent accessibility of three neighboring peptides on the same face of CENP-E. We deduce that this is the site of MT attachment and conclude that loop L11, helix alpha4, loop L12, helix alpha5, loop L8, and strand beta5 constitute the main MT interface of the CENP-E motor domain. Similarly for Eg5/AS-2, a region of increased solvent accessibility locates the MT interface of Eg5.