Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Molecular biology and evolution

The effect of gene overlapping on the rate of RNA virus evolution

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular biology and evolution - 17 May 2013

Simon-Loriere E, Holmes EC, Pagán I

Link to Pubmed [PMID] – 23686658

Mol. Biol. Evol. 2013 Aug;30(8):1916-28

Gene overlapping is widely employed by RNA viruses to generate genetic novelty while retaining a small genome size. However, gene overlapping also increases the deleterious effect of mutations as they affect more than one gene, thereby reducing the evolutionary rate of RNA viruses and hence their adaptive capacity. Although there is general agreement on the benefits of gene overlapping as a mechanism of genomic compression for rapidly evolving organisms, its effect on the pace of RNA virus evolution remains a source of debate. To address this issue, we collected sequence data from 117 instances of gene overlapping across 19 families, 30 genera, and 55 species of RNA viruses. On these data, we analyzed how genetic distances, selective pressures, and the distribution of RNA secondary structures and conserved protein functional domains vary between overlapping (OV) and nonoverlapping (NOV) regions. We show that gene overlapping generally results in a decrease in the rate of RNA virus evolution through a reduction in the frequency of synonymous mutations. However, this effect is less pronounced in genes with a terminal rather than an internal gene overlap, which might result from a greater proportion of protein functional conserved domains in NOV than in OV regions, in turn reducing the number of nonsynonymous mutations in the former. Overall, our analyses clarify the role of gene overlapping as a modulator of the evolutionary rates exhibited by RNA viruses and shed light on the factors that shape the genetic diversity of this important group of pathogens.

http://www.ncbi.nlm.nih.gov/pubmed/23686658