Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : European journal of immunology

The adjuvant effect of TLR agonists on CD4(+) effector T cells is under the indirect control of regulatory T cells

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in European journal of immunology - 06 Jun 2011

Olivier A, Sainz-Perez A, Dong H, Sparwasser T, Majlessi L, Leclerc C

Link to Pubmed [PMID] – 21538349

Eur. J. Immunol. 2011 Aug;41(8):2303-13

TLR agonists have been suggested to directly impact Tregs, thereby enhancing or reversing their suppressive function. Here, in order to select TLR agonists leading to potent effector T-cell responses, while minimizing Treg inhibitory function, we used a model antigen, covalently linked to an inert delivery system, combined with a large panel of TLR agonists, for the immunization of mice with an attenuated/depleted or intact Treg subset. We observed that the negative modulation of effector CD4(+) T cells exerted by Tregs cannot be circumvented, whatever the TLR agonist used as adjuvant. To better understand the impact of TLR agonists on Tregs, we investigated (i) the TLR expression profile of highly purified CD4(+) Foxp3(+) Tregs, at steady state or subsequent to in vivo activation by TLR agonists and (ii) the Treg phenotype after in vivo and in vitro activation by TLR agonists. Our results demonstrate that TLR agonists, as single signal inducers, are not able to directly activate Tregs. The phenotypic Treg activation observed in vivo, following TLR administration, does not result from cross-talk with conventional T cells but is rather a consequence of the interaction with other immune cell type(s).